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MULTIVARIATE QUALITY CONTROL PROCEDURES

1. INTRODUCTION

Cumulative sum (CUSUM) quality control schemes are used
in industry to detect a change in the quality of a manufactured
product. It is helpful to view CUSUM schemes as a sequence of
sequential probability ratio tests. The most frequent
application of CUSUM schemes is the detection of a change in the
mean of a normally distributed variable. For this application,
an algebraic rearrangement of the logarithm of the probability
ratio yields a simple, recursive test statistic. There are two
major problems that can arise in deriving CUSUM schemes from the
theory of sequential tests. First, the theory requires
specification of two simple hypotheses (as opposed to composite
hypotheses)l to be tested; but, the most common application of
quality control schemes requires testing the simple hypothesis
that the mean is at its desired level versus the composite
hypothesis that the mean has shifted from its target value.
Second, the logarithm of the probability ratio may be too
complex to yield a simple, practical scheme. Both of these
problems have had an impact on the development of a multivariate
CUSUM scheme.

The specification of both an aim or target value a and a
specific alternative d for the mean vector u of a multivariate
normal distribution with known covariance matrix V does yield a
CUSUM scheme. 2 In many applications, however, there is no basis
for selecting a specific point d for the alternative hypothesis.
In the univariate case, this problem is not so severe: there
are only two directions for the mean to shift, either higher or
lower. The exact amount of shift is not a problem. To
paraphrase Tukey,3 detecting a shift of five standard deviations
is nearly trivial; whereas, detecting a shift of 0.05 standard
deviation is nearly impossible. CUSUM schemes designed to
detect a shift of one standard deviation are widely used and, of
course, also quickly detect shifts of more than one standard
deviation. The choice between detecting a shift to the high
side and detecting a shift to the low side is resolved by
operating two schemes simultaneously. The two schemes are
considered to be a single two-sided CUSUM scheme, and the
performance of the procedure is determined accordingly.

Woodall and Ncube4 suggest extending the univariate
CUSUM procedure to the multivariate case: to detect a shift in
the mean vector of a p-variate normal distribution, operate p
one-sided or two-sided CUSUM schemes simultaneously, and
evaluate the performance of the collection of schemes. The
performance of CUSUM schemes is usually measured by the average
run length (ARL), which is the average number of samples
required for the scheme to signal that the mean has changed. In
the univariate case, the ARL is often plotted as a function of
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the standardized deviation of the mean from its target value;
the graph is referred to as an ARL curve. The ARL of the
Woodall and Ncube4 procedure depends on the direction that the
mean vector shifts. The dependency of the ARL on the direction
of the shift is lessened but not removed by using principal
components rather than the original variables.

In contrast, the ARL of the multivariate Shewhart chart
(due to Hotelling,5 and also known as a T-squared or chi-squared
chart), depends on the mean vector u and covariance matrix V
only through the noncentrality parameter

d = [(u-a)'V-1 (u-a) ]1/2 fl)

Hence, it is possible to consider the ARL as a function of d and
construct an ARL curve. The multivariate Shewhart chart signals
that the mean has shifted at the first observation x such that

Tn = R(Xn-a)' V-I(xn-a)]1/ 2 > SCL (2)

where SCL is the Shewhart control limit. Hotelling5 suggested
plotting T-squared, rather than T, to avoid "Ihe labor of
extracting square roots." The positive square roots of
quadratic forms will be used in this report to express the
quantities on a more meaningful scale.

A natural method to develop a multivariate CUSUM
procedure that has ARLs dependent only on the noncentrality
parameter is to base the CUSUM on the noncentrality parameter
itself, that is, test for a change in the noncentrality
parameter of a chi-square distribution. Unfortunately, this
test produces a mathematically intractable probability ratio,
and it is not clear what the CUSUM test statistic should be.
Transforming from the chi-square distribution to the chi
distribution does not help because the Jacobian of the
transformation appears in the numerator and denominator of the
probability ratio, thus canceling out and yielding the same
complex expression. Crosier6 proposes two heuristically derived
multivariate CUSUM procedures that have ARLs depending only on
the noncentrality parameter and hence are easily compared to
multivariate Shewhart charts. Similar but distinct procedures
have been developed independently by Pignatiello and Kasunic 7

and by Pignatiello, Runger, and Koipela.8

The CUSUM schemes examined in this report are described
in Section 2, which also gives a numerical example of their
operation. Sections 3, 4, and 5 present the design procedures
and ARLs of multivariate Shewhart charts, a CUSUM of T
statistics scheme and a CUSUM vector scheme, respectively.
Two applications of multivariate quality control schemes are
examined in Section 6, and the results are summarized in Section
7. The methods used to calculate the ARLs of the schemes are
given in Appendix A.

8



2. DESCRIPTION OF THE PROCEDURES

The most direct and obvious method of replacing the
mult-ivariate Shewhart chart by a CUSUM procedure is to form a
C"JSUM of the scalers Tn, n = 1,2,3 .... This will be referred to
as a CUSUM of T (COT) scheme; the CUSUM is given by

Sn = max(0,SSn-1 + Tn-k), (3)

where So > 0 and k > 0. The COT scheme signals when Sn > h.

Although multivariate Shewhart charts based on T-squared and on
T are equivalent, CUSUM schemes based on T-squared and on T are
not. CUSUM of T statistics cumulate distance, whereas CUSUM of
squared T statistics would cumulate squared distance. Healy2

shows that a CUSUM of squared T statistics is the appropriate
sequential theory test for an inflation (multiplication by a
scaler constant) of the covariance matrix V.

A vector-valued CUSUM scheme can be "derived" by
replacing the scaler quantities of a univariate CUSUM scheme by
vectors. The univariate CUSUM scheme to detect an increase in
the mean is Sn = max[O,Sn-i + (Xn-a)-ks], where a is the aim
point or target value for the mean, s is the standard deviation
of the X's, k > 0, and So > 0. Replacing the scalers by vectors
gives sn, = max[Osn-I + (xn-a)-k]. The problems are how to find
k and how to interpret taking the maximum of a vector and the
null vector. In the univariate case, the quantity Sn-1 + Xn-a
is shrunk toward zero by k standard deviations. If this is to
hold for the multivariate case, k must satisfy k' V-i k = k2,
that is, k must be of length k, where length is defined using
the covariance matrix V. If the subtraction of k is to shrink
Sn-i + Xn-a toward zero (the null vector 0) , then k must be in
the same direction as Sn-i + xn-a. Hence, k = (k/Cn) (Sn-l +
Xn-a), where Cn is the length of Sn-i + xn-a. The maximum with
the null vector can be interpreted as setting sn = 0, rather
than subtracting k; whenever the length of k is greater than the
length of Sn-i + xn-a, that is, whenever k > Cn. Rather than
calculate the vector k and subtract it from sn-1 + xn-a, it is
simpler to just contract the vector Sn-i + Xn-a by (l-k/Cn),
provided that k < Cn. Hence, the multivariate CUSUM scheme may
be expressed as follows:

Let Cn = [Sn-i + xn-a)'V-(sn-i + xn-a)]I/2

then sn = 0 if Cn ( k

Sn = (Sn-i + xn-a)(1-k/Cn) if Cn > k, (4)

where so = 0 and k > 0. Let

Yn = (sn'V-sn)i/2  (5)

The multivariate CUSUM scheme signals when Yn > h.
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Table 1 gives a numerical example of these schemes for a
bivariate normal distribution with unit variances and
correlation 0.5. The process mean is (0,0) for the first five
observations and (1,2) for the last five observations. The
first three columns of Table 1 give the sample number (n) and
the observations of the random variables X, and X2 . The columns
headed S, and S2 are the elements of the multivariate CUSUM
vector (equation 4), and the last column is the multivariate
CUSUM test statistic Yn from equation 5. The k values for the
CUSUM of T and multivariate CUSUM schemes are 1.41 and 0.5,
respectively. These k values are optimal for detecting a shift
of one generalized standard deviation (in the sense that the ARL
at d = 1 is a minimum, given that the on-target ARL is held
constant). The signal criteria (values of h and SCL) yield an
on-target ARL of 200 for each scheme. When the multivariate
CUSUM scheme signals, the CUSUM vector elements are both
positive and approximately in the 1:2 ratio of the individual
component means. This indicates the direction that the mean has
shifted; it is not necessarily intended as a formal mechanism
for estimating the process mean.

Table 1. Numerical Example of Bivariate Quality Control
Schemes.

Observations CUSUM OF T CUSUM Vector

n X1 X2 T2 T S S1  S2  Y

1 -1.19 0.59 3.29 1.81 0.40 -0.86 0.43 1.31
2 0.12 0.90 0.96 0.98 0.00 -0.56 1.01 1.60
3 -1.69 0.40 4.92 2.22 0.81 -1.95 1.22 3.20
4 0.30 0.46 0.22 0.47 0.00 -1.40 1.43 2.83
5 0.89 -0.75 2.70 1.64 0.23 -0.30 0.39 0.69
6 0.82 0.98 1.11 1.05 0.uO 0.33 0.88 0.89
7 -0.30 2.28 7.96 2.82 1.41 0.03 2.72 3.13
8 0.63 1.75 3.14 1.77 1.77 0.59 4.01 4.33
9 1.56 1.58 3.29 1.81 2.18 1.96 5.09 5.14
10 1.46 3.05 9.31 3.05 3.82 3.21 7.65 7.68*

Criteria for signal: SCL h h
3.36 4.04 5.50

*off-aim signal; the other two schemes have not yet signaled.
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3. MULTIVARIATE SHEWHART CHARTS

Figures 1 and 2 give ARLs of Shewhart charts as a
function of d for p = 2, 5, 10, and 20 variables. The SCLs are
the 99.5 and 99.8 percentiles of the (central) chi distribution
p degrees of freedom. This choice of SCLs gives on-target ARLs
of 200 and 500, respectively. The off-target (d > 0) ARLs were
found using the numerical approximations described in Appendix
A. One characteristic of multivariate Shewhart charts is that
the SCL must be increased as the number of variables increases
to obtain the same on-target ARL. (Interpreting the multi-
variate Shewhart charts as multivariate CUSUM schemes with h = 0
and k = SCL indicates that multivariate Shewhart charts are
"designed" to detect larger shifts in the noncentrality
parameter as p, the number of variables, increases.)

A practical problem with multivariate Shewhart charts is
their lack of robustness. They are sensitive to multivariate
outliers. Multivariate outliers are observations x that have
large T statistics; however, no element of x would be considered
an outlier by a univariate outlier test. Many of the
multivariate outliers in industrial plant data are due to
clerical or keypunching errors (the correct numbers are often
found on the original data sheets). Further, when it does
shift, the process mean often does so along the major axis of
the multivariate probability ellipsoid. The presence of
multivariate outliers suggests that robustness is a desirable
feature for multivariate quality control schemes. Because
typical process failures shift the mean in a particular
direction, it may be helpful to have outlier criteria that are
sensitive to the direction of the observation as well as its
distance from the target value.

4. CUMULATIVE SUM OF T-STATISTICS

The COT schemes offer several advantages over
multivariate Shewhart charts. First, COT schemes may be
designed to detect a specific shift in the process mean (i.e.,
in the noncentrality parameter). Second, recent enhancements
for CUSUM schemes may be applied to COT schemes. A robustness
procedure, such as the two-in-a-row ruleg may be applied to the
sequence of T statistics. The two-in-a-row rule states that
outliers should be ignored (not used in the CUSUM calculations),
but the occurrence of two outliers in succession is taken as zn
off-aim signal. The Fast Initial Response (FIR) feature for
CUSUM schemes10 is easily extended to COT schemes. Quick
detection of an initial off-aim condition is obtained by
starting the scheme with So = h/2 rather than zero. If the
process is off-aim, the CUSUM will signal quicky due to the head
start. If the process is on-target at start up, the head start
will likely be removed by the subtraction of k at each
observation. Finally, a combined multivariate Shewhart-COT
scheme, analogous to the combined Shewhart-CUSUM schemes of
Lucas11 is readily obtained using the T statistics. A combined

11
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multivariate Shewhart-COT quality control scheme is implemented
by operating a COT scheme and a multivariate Shewhart chart
simultaneously; the combined scheme signals if either component
scheme signals. Combined Shewhart-COT schemes lack robustness,
but they may be used to monitor laboratory measurement errorl1

where any extreme value must be examined.

Figures 3 and 4 present ARLs of COT schemes for
p = 2, 5, 10, and 20 variables. These schemes are designed to
detect any shift in the mean vector yielding d = 1. The h
values were chosen to provide an on-target ARL of 200 or 500.
The ARL curves in Figures 3 and 4 indicate that COT schemes give
improved detection of small shifts (e.g., d = 1) over
multivariate Shewhart charts. ARL curves for the COT schemes of
Figures 3 and 4 with the FIR feature implemented are given in
Figures 5 and 6. The head start decreases the on-target ARL
more for the larger rather than the smaller values of p. For
COT schemes with an on-target ARL of 200, the FIR feature
decreased the on-target ARL by 9% for the p = 2 case and by 15%
for the p = 20 case. As the off-target (d = 1) ARLs decreased
by 28% and 27%, respectively, the FIR feature is less
advantageous at p = 20 than it is at p = 2.

A k value may be defined as optimal to detect a shift to
d = 1 if the ARL at d = 1 is a minimum given that the on-target
ARL is held constant. (For any value of k, the desired on-
target ARL can be obtained by varying h.) A search for the
optimal k produced a sequence that closely resembled the square
root of the number of variables. Hence, the k's used in Figures
3-6 were found, to about two and a half significant figures, by
a simple search; the square root of the p sequence determined
the last digit.

5. MULTIVARIATE CUSUM SCHEMES

The ARLs of multivariate Shewhart charts and COT schemes
depend on the mean vector and covariance matrix only through the
noncentrality parameter because these procedures are based on
Hotelling's T statistic.5 It is not as clear that multivariate
CUSUM schemes have this property, even though both parameters (h
and k) are used to define ellipsoidal regions. Initially, the
dependence of the ARL on only the noncentrality parameter was
checked by using simulation results for the bivariate case. Dr.
John Healy has provided a detailed proof of the dependence of
the ARL on only the noncentrality parameter. The proof and some
mathematical properties of the multivariate CUSUM procedure are
discussed in Appendix B.

Multivariate CUSUM schemes, like COT schemes, offer the
advantages of a CUSUM scheme over a Shewhart chart: ability to
design the scheme to detect a specific shift in the mean vector
and ability to implement recent enhancements for CUSUM schemes
(e.g., the FIR feature). In addition, the directional nature of
multivariate CUSUM offers some advantages over the directionless

14
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COT schemes. Because multivariate CUSUM schemes allow observa-
tions opposite directions from the target value to cancel each
other, one suspects that multivariate CUSUM schemes will have
better ARL properties than COT schemes, that is, the cancel-
lation will occur more often when the process mean is on target,
thus raising the on-target ARL relative to the off-target ARL.
Figures 7 and 8 give ARL curves for multivariate CUSUM schemes
that can be compared to the ARL curves for multivariate Shewhart
charts (Figures 1 and 2) and COT schemes (Figures 3 and 4). The
ARL curves in Figures 7 and 8 show that multivariate CUSUM
schemes give quicker detection of small shifts than multivariate
Shewhart charts and COT schemes. Another advantage to the
vector-valued CUSUM scheme is it provides at least some
indication of where the mean has shifted when a signal is given.

The design procedure of multivariate CUSUM schemes is
straightforward. To detect any shift in the mean vector u,
yielding noncentrality parameter d, choose k = d/2. Table 2
compares the ARLs of bivariate schemes with k = 0.5, k = 1, and
k = 1.5. The choice of k = d/2 appears to minimize the ARL at d
for a given on-target ARL. The decision interval h is chosen to
provide an acceptable on-target ARL. Details of the method used
to select the h values in Figures 7 and 8 are given in Appendix
A. [A Markov chain approximation may be used to determine the
on-target ARLs (Appendix C).]

Table 2. ARL Curves for Bivariate Schemes with k = 0.5, 1,
and 1.5.

h = 5.50 h = 2.99 h = 1.87
d k = 0.5 k = 1 k= 1.5

0.0 200.0 200.0 200.0
0.5 28.8 48.0 78.7
1.0 9.35 11.0 18.4
1.5 5.94 5.08 7.14
2.0 4.20 3.48 3.72
2.5 3.26 2.51 2.36
3.0 2.78 2.08 1.69

Development of a combined multivariate Shewhart-CUSUM
quality control scheme is straightforward: a multivariate CUSUM
scheme and a multivariate Shewhart chart are operated
simultaneously; a signal by either scheme indicates that the
process mean has shifted. Robustness for the multivariate CUSUM
scheme may be obtained by applying the two-in-a-row rule to the
T statistics for the observations. Special outlier criteria,
rather than T statistics, could be used to tailor the robust-
ness procedure to specific applications.
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The FIR feature for multivariate CUSUM schemes is
implemented by changing the value of h at the start of the
scheme.

Let h0 = h/2

and hn min[h,hn-1 + max(O,k*-Tn)] for n = 1,2,3 ..... (6)

where Tn is Hotelling's T statistic 5 for the nth observation,
and k* is the k value for a COT scheme designed to detect the
same deviation as the multivariate CUSUM scheme. Figures 9 and
10 give ARL curves of the multivariate CUSUM schemes in Figures
7 and 8 but with the FIR feature implemented. The FIR feature
decreases the on-target ARLs more for larger p than it does for
smaller p, but the effect is not as deleterious as it is for COT
schemes because the off-target (d = 1) ARLs are also decreased
more for larger p than they are for smaller p. For multivariate
CUSUM schemes with an on-target ARL of 200, the FIR feature
decreases the on-target ARL by 9% for p = 2 and by 22% for
p = 20, but the off-target (d = 1) ARLs are decreased by 29% and
49%, respectively. The results for multivariate CUSUM schemes
with an on-target ARL of 500 are very similar.

Multivariate CUSUM schemes compare favorably to the
Woodall and Ncube4 procedure. Table 3 gives the ARLs for the
Woodall and Ncube procedure applied to principal components
(that are scaled to have variance 1) and the ARLs (with standard
errors) of a comparable multivariate CUSUM scheme. (Notice
that, for the same value of d, the ARLs of the Woodall and Ncube
procedure4 are usually larger when the direction of the shift is
along one of the original axes than when the direction of the
shift is along one of the principal component axes.) In Table
3, the off-target ARLs of the multivariate CUSUM scheme are less
than or equal to the ARLs of the Woodall and Ncube procedure. 4

The difference between the ARLs of the two procedures is usually
several times the standard error of the estimated ARL of the
multivariate CUSUM scheme. However, there is another source of
error that must be considered. The value of h required to give
the multivariate CUSUM scheme an on-target ARL of 125 is an
estimate obtained by the method given in Appendix A. This
method requires regressing log (ARL) on h, where the ARLs for
different h's are obtained by simulation. The estimated h for
an on-target ARL of 125 is 4.95, the value used for Table 3. A
95% fiducial interval12 for the value of h yielding an on-target
ARL of 125 is (4.84, 5.09). Using an h value of 5.09, the ARLs
of the multivariate CUSUM scheme, for d = 0.5, 1, 2, and 4 are
27.1, 9.3, 3.9, and 2.0 with standard errors of 0.95, 0.24,
0.06, and 0.02, respectively. Except for d = 4, where the ARLs
of the two procedures are equal, these ARLs are still
significantly smaller than the ARLs of the Woodall and Ncube
procedure. (The Markov chain approach described in Appendix C
gives an on-target ARL of 126 for the bivariate CUSUM scheme
h = 4.95, k = 0.5.)
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Figure 9. ARL Curves for the Multivariate CUSUM

Schemes of Figure 7 but with the Fast
Initial Response Feature Implemented.
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Table 3. Comparison to the Woodall and Ncube Procedure on
Principal Components: Bivariate Procedures with
On-Target ARLs of 125.

Woodall and Section 5
r U1  U2  d Ncube ARL ARL SE

0.0 0.5 0.0 0.5 33.6 26.8 1.02

-0.5 0.5 0.0 0.58 28.7 20.7 0.76

-0.5 0.5 -0.5 0.58 26.7 20.6 0.79

0.5 0.5 0.0 0.58 28.7 18.9 0.62

0.5 0.5 0.5 0.58 26.7 19.3 0.68

0.0 1.0 0.0 1.0 10.9 8.9 0.22

-0.5 0.5 0.5 1.0 10.9 9.2 0.21

0.5 0.5 -0.5 1.0 10.9 9.1 0.23

-0.5 1.0 0.0 1.15 9.8 7.1 0.15

-0.5 1.0 -1.0 1.15 8.8 7.2 0.14

0.5 1.0 0.0 1.15 9.8 7.3 0.17

0.5 1.0 1.0 1.15 8.8 7.6 0.17

0.0 2.0 0.0 2.0 6.0 3.8 0.06

-0.5 1.0 1.0 2.0 4.1 3.8 0.06
0.5 1.0 -1.0 2.0 4.1 3.7 0.06

-0.5 2.0 0.0 2.31 3.9 3.2 0.05

-0.5 2.0 -2.0 2.31 3.5 3.3 0.05

0.5 2.0 0.0 2.31 3.9 3.3 0.05

0.5 2.0 2.0 2.31 3.5 3.2 0.05

-0.5 2.0 2.0 4.0 2.0 2.0 0.02

0.5 2.0 -2.0 4.0 2.0 2.0 0.02

NOTE: The Woodall and Ncube procedure has h = 5 and k = 0.5;
the Section 5 CUSUM procedure has h = 4.95 and k = 0.5.
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6. APPLICATIONS

In making synthetic yarn, the fibers are stretched as
they are made.13 The stretching of the fiber orients the
molecules and makes the fiber stronger and more brittle. A
measure of this stretching is the draw ratio, which is defined
as the stretched length divided by the original length. The
finished fiber is tested for acceptable strength by a tensile
machine that pulls a fiber until it breaks. The force required
to break the fiber (break strength) and how far the fiber
stretched while being pulled (elongation) are reported by the
tensile machine. Break strength and elongation are positively
correlated because the fibers are all made at the same draw
ratio. Break strength and elongation show a negative
relationship only when the draw ratio is varied. A multivariate
quality control scheme for this example should be based on the
positive correlation between break strength and elongation.

Lucas13 mentions that a multivariate Shewhart chart was
used to obtain tighter control of this process than is possible
using simultaneous univariate CUSUM schemes. Either a COT
scheme or a multivariate CUSUM scheme could be used for even
tighter control of the process. Univariate CUSUMs of the
principal components would also be an excellent procedure for
this application. First, a rectangle based on principal
components fits around the tilted ellipsoidal region much more
closely than a rectangle based on the original components.
Second, the principal components are interpretable: the minor
component corresponds to problems with the draw ratio, whereas
the major component corresponds to the usual variation (perhaps
due to temperature fluctuations) in the process. A multivariate
Shewhart chart or a COT scheme will not indicate what the
problem is when the scheme signals. However, a multivariate
CUSUM scheme will provide an indication of the direction that
the mean has shifted and identify the problem.

Principal components allow adoption of an outlier rule
specific to this application. In testing synthetic fibers by a
tensile machine, unusual values of the minor principal component
are much more likely to indicate data errors than an actual
process shift, whereas unusual values of the major principal
component are much more likely to indicate a process shift than
a data error. Hence, the minor principal component, rather than
a T statistic, could be used to judge the acceptability of an
observation. This outlier criterion could be used with any
multivariate quality control procedure, not just CUSUMs of the
principal components.
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Philpot and Ranney* discuss the use of multivariate
Shewhart charts for a rolling operation. A roller is used to
control the thickness of a paper, plastic, or metal sheet
product. If three measurements of thickness are made across the
sheet (left side, middle, and right side), these measurements
will be highly (positively) correlated. Two types of problems
encountered in rolling operations are tilt of the roller, which
makes the measurement on one side too high and the measurement
on the other side too low, and buildup of material on the roller,
which makes one measurement too low. Philpot and Ranney*
demonstrate the superiority of the multivariate Shewhart chart
over simultaneous univariate Shewhart charts to detect these
problems in a rolling operation. These authors* also examine
the individual components of the observation vector x to
determine whether the problem is tilt or buildup on the roller.
COT schemes and multivariate CUSUM schemes would give improved
detection of these types of problems over multivariate Shewhart
charts. The CUSUM vector of a multivariate CUSUM scheme could
be examined to determine the nature of the process problem.

The covariance matrix of thickness measurement across a
sheet product made by a rolling operation will have all diagonal
elements equal and all off-diagonal elements equal. This
assumes that the covariance matrix is estimated from data during
a period of stable operation, that is, a period during which the
process mean is constant. If buildup on the roller occurs
during the period of data collection, the covariances in one
particular row and column will be too low. An unstable tilt of
the roller during data collection would make the covariances
decrease with increasing distance between the measurements. Of
course, even in a univariate case, one does not estimate the
variance from data taken during a period of process instability.
Sampling variability will prevent the estimated variances and
covariances from being exactly equal; a constrained estimation
procedure may be useful.

Rolling operations provide an example in which neither
CUSUMs of the original variables nor CUSUMs of principal
components are a satisfactory procedure. Only the first
principal component of the equal-variance, equal-covariance
matrix is uniquely defined,14 it is proportional to the sum of
the measurements. A CUSUM of the first principal component
would detect changes in the overall thickness of the sheet. A
linear trend could be used for the second principal component
and this would correspond to problems with the tilt of the
roller. But the buildup problem cannot be reduced to p-2
meaningful principal components. The p-2 additional principal
components do not indicate where the buildup has occurred, and
there may be more than three measurements across the sheet, thus
producing many such uninformative principal components.

*Philpot, J.W., and Ranney, G., Multivariate Control Charts
in Action: Some Uses and Examples, unpublished data, 1985.
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7. SUMMARY AND CONCLUSIONS

The first multivariate CUSUM quality control procedure
reduces each observation to a scalar (Hotelling's T statistic)s
and forms a CUSUM of the T statistics. This procedure is
referred to as COT. The second procedure, referred to as
multivariate CUSUM, forms a CUSUM vector directly from the
observations. Both procedures allow use of recent enhancements
for CUSUM schemes (e.g., robustness and the FIR feature). Both
these cumulative sum procedures reduce to multivariate Shewhart
charts when the CUSUM scheme parameter h is zero. (The
analogous relationship holds for univariate CUSUM schemes and
Shewhart charts.) The ARL of the two multivariate CUSUM
procedures depend on the mean vector and correlation structure
of the data only through the noncentrality parameter d. This
property also holds for multivariate Shewhart charts and allows
the three multivariate quality control schemes to be compared
easily. Multivariate CUSUM schemes and COT schemes give faster
detection of small shifts in the mean vector than multivariate
Shewhart charts with multivariate CUSUM schemes giving faster
detection than COT schemes. Multivariate CUSUM schemes may also
be referred to COT schemes because the CUSUM vector indicates
the direction that the mean has shifted.

The nature of multivariate data is briefly discussed
from an applied point of view. Robustness is practically
required in a multivariate quality control scheme due to the
presence of multivariate outliers. In some applications, the
correlation structure of multivariate data may allow develop-
ment of a unique outlier rule for the specific application.
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APPENDIX A

NUMERICAL METHODS

The calculation of ARLs for multivariate Shewhart charts
is relatively straightforward: ARL = l/q, where q = Prob
(T > SCL). In addition, the probability that T exceeds SCL is
the probability that a chi-squared variable (central or
noncentral) with p degrees of freedom exceeds the Shewhart
control limit squared. These probabilities were found using the
International Mathematical and Statistical Libraries,
Incorporated (IMSL) routine MDCHN.*

The calculation of ARLs for COT schemes was based on the
Markov chain approach of Brook and Evans.* Their development
will not be repeated here except as necessary to document the
procedures used for this work. The transition probabilities
were found using the techniques given by Brook and Evans** but
with the chi distribution (central or noncentral) replacing the
Gaussian distribution. The cumulative distribution function of
the chi distribution at a point x was obtained by squaring x and
referring to the chi-square distribution calculated by the IMSL
routine MDCHN. Thirty-two transient states were used in the
Markov chain approximation; the ARL starting from the first
state was used as the ARL when the continuous CUSUM scheme
started at zero.** For the FIR feature, the ARL was calculated
by quadratic interpolation (least squares fit) using the four
states closest to the head start value h/2.

The ARLs for the multivariate CUSUM schemes were
obtained by simulation. The only difficulty was finding the
value of h (call it h') that gives the required on-target ARL.
To find h' for an on-target of 200, an ARL was calculated from a
simulation of 50 run lengths; if the ARL was less than 200, an
increment of 0.25 was added to h but was subtractd from h if the
ARL was greater than 200. Even with a close initial guess,
eight iterations of this technique (400 run lengths) did not
yield a good estimate of h'. Hence, the procedure was repeated
using an increment of 0.1 and 20 iterations. All 28 ARLs (each
based on 50 run lengths) were used in a linear regression of log
(ARL) on h. The regression equation was used to estimate h'.
The values of h for all other multivariate CUSUM schemes (those
with on-target ARLs of 500 or 125, or with k = 1 or 1.5) were
obtained by the same procedure but used only 20 iterations and
an increment of 0.1. Therefore, on-target ARLs were assumed to
be the required values. The ARLs for d > 0 were found from
simulations of 400 run lengths.

*International Mathematical and Statistical Libraries, Inc.,
IMSL Library, 9th ed., Houston, TX, 1982.

**Brook, D., and Evans, D.A., "An Approach to the Probability

Distribution of CUSUM Run Lengths," Biometrika Vol. 59,
pp 539-549 (1972).
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The ARLs for multivariate CUSUM schemes with the FIR
feature were also obtained by simulation of 400 run lengths.
However, the ARLs at d = 0 were quite variable and were smoothed
by regressing log (ARL) on p. The predicted ARLs from this
regression were used in Figures 9 and 10 for the ARLs at
d = 0.
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APPENDIX B

MATHEMATICAL PROOF

This proof that the distribution of the multivariate
CUSUM test statistic Y(n) depends only on the value of the
noncentrality parameter is based on the proof provided by
Dr. John Healy.

Without loss of generality, assume that a = 0 and let

u = E(x). Then the multivariate CUSUM becomes

Cn = [(sn- i + xn)'V-(sn- i + Xn)]l/ 2  (B-l)

s n = 0 if Cn : k

sn = (sn- i + xn)(1-k/Cn) if Cn > k. (B-2)

Let u' V-1u denote the squared noncentrality parameter. If
U'1V-LU = U'2V-]u2, then the distribution of Y. is the same.
First, some lemmas.

Lemma 1:

If 1 is a pxp full rank matrix and x* = Mx, then the statistics
C(n) and Y(n) have the same values when calculated from x* as
when calculated from x. In addition, s*, the multivariate CUSUM
vector for x*, satisfies s* = Ks.

Proof

The proof is by induction. Note that E(x*) = Mu and
Var(x*) = MVN'.

For n = 1,

C*1 - (z*'(M-V-1N 1)x*lI'/2 - [zsW('N'l-lV-1-1)Kzll]/
2

n = ' V' 1 xP1/2 = C, (B-3)

and

s*1 = x*i(l - k/C*l) = x*1 (l-k/C1 ) = MXj(l - k/Cj) = Msj. (B-4)

Now assume for n-1 and prove for n:
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C* n= [(s*n-1 + X*n)'(M'-V-Ml-)(S*ni + x*n)]1/ 2  (B-5)

= [(Msn-I + MKn)'(M'IV-lM-l) (Msn-I + MNn)1 1 / 2

= [(Sn-i + xn)'N(M'-1V'MlW1 )M(Sn-1 + zn)]l/ 2

= [(Sn-1 + xn)'V-
1 (Sn-I + In) 1 / 2

C
n

and

s n = (s*n-1 + X*n)( 1 - k/Cn) (B-6)

= (s'n-I + X*n)(l - k/Cn)

= (MSn-1 + Mxn)(1 - k/Cn)

= M(sn-1 + Xn)(1 - k/Cn)

= KSn.

Therefore, Y*n = [s*n'(M'-lV-l-)s*.]1/2 = [Sn'M (M'-lV-1M - 1 )

MSn]1/2 = Yn. That is, the test statistic Y(n) is identical
when x* is used instead of x.

Apply lemma 1 with M = P where P is an orthogonal matrix
(P'P = PP' = I) that diagonalizes V. The principal components
are w = Px and PVP' = D, a diagonal matrix of the eigenvalues of
V. This shows that the multivariate CUSUM test statistics Y(n)
are identical when calculated from the principal components
instead of from the original variables. Lemma I can then be
applied with

1 = D-1/ 2  (B-7)

to show that principal components scaled to have variance one,

z = D1/2w, (B-8)

also give the same test statistics.

Lemma 2:

If x* = Mx where M is a pxp matrix of full rank, then

x*,(M'-lV-K-I)x* = x'M'(1'-IV-1M-l)Mx = x'V-lx.

This lemma implies that the noncentrality parameter has the same
value whether computed from the original dependent variables,
principal components, or principal components scaled to have
variance one.
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Lemma 3:

If U'IV- 1U = u'2V-Iu2, a nonsingular matrix M exists such

that ul = Mu2 .

Proof:

M can be found by the following procedure. Because it
is a product of invertible matrices, it is nonsingular.

The first step is to transform x to z, the principal
components scaled to have variance one. Let E(z) = v. By lemma
2, V'iVI = V'2V2 where vl and v2 are the images of ul and u2
under the transformation from x to z. Note an orthogonal matrix
Q exists such that Vi = QV2.

The transformation defined by the matrix Q changes from
one basis to another in a vector space. Orthogonal
transformations preserve length in the sense that if Vi = QV2,
then V'IVI = V2 Q'QV2 = V'2V2. To find M, substitute D-I/2 Pu for
v in Vl - Qv2: D-1/ 2Pul - Q(D-1/ 2Pu2), or ul = P-IDI/2QD-1/ 2Pu2 so that
M = P'DI/2QD-'/ 2p.

Lemma 4:

Yn= max(0,Cn- k].

Proof:

By definition, Yn = +[S'nV-isn]'/ 2. Recall that

Sn 0 if Cn < k (B-9)
Sn =(sn- + Xn)(l - k/Cn) if Cn > k.

Therefore, for Cn > k,

Yn2 M S'nV-1 Sn - (Sn-i + zn)'(1 - k/Cn)V'(Sn-I + zn)(1 - k/Cn) (B-10)

= (I - k/Cn)2 (Sn-i + Xn)'V-(Sn-I + xn)

= (1 - k/Cn)2Cn2

= (C.- k)2

or

Yn = Cn-k

Let f(CnIE(x) = ul) denote the distribution function of
Cn calculated from the random variable x given E(x) = ul.
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Theorem

If U'lV-1ul = u'2V-lu 2 , then f[(CnIE(x) = U1] = f[CnIE(x) = U2].

The theorem equates the distributions of C(n) when the data
vectors have one of two alternative probability densities. Let
pdfl refer to the density specified by E(x) = ul, and pdf2 refer
to the density specified by E(x) = U2. To prove the theorem,
express pdf2 in transformed variates t = Mx where K is given in
lemma 3. This gives

E(t) = Mu2 = ul andVar(t) =MVM' = V. ToshowVar(t) =V,writeout

MVW' = P'DI/2QD-1/ 2PVP'D-1/ 2 Q'DI/ 2P. As PVP' = D, this becomes

MVI = P'Dt/2Q(D-1/2DD-1/2)Q'D1/2P = P'DI/2(QQ, )D1/2P = P'DP

Substituting D = PVP' into P'DP gives MVM' = P'(PVP')P = V.
Hence, pdf2, expressed in the transformed coordinates t, is the
same as pdfl expressed in x coordinates. The value of C(n) is
invariant with respect to the transformation from x to t, so
that

f(CnIE(x) = u2) = f[CnIE(t) = MU2 = Ul. (B-i)

Because the data vectors for pdfl (in x coordinates) and pdf2
(in t coordiantes) have multivariate normal distributions with
the same mean vector and covariance matrix,

f[CnIE(x) = U1] = f[CnIE(t) = Ul]. (B-12)

Combining equations B-11 and B-12 gives

f[CnIE(x) = ul] = f[CnIE(x) = U2].

By lemma 4, y, = max(O,C. - k) so that the distribution of Y.
given u is the same as the distribution of y given u2 when
uV-1 u I = u 2V-

1 u 2.
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APPENDIX C

MARKOV CHAIN REPRESENTATION

For the on-aim case, the ARLs of the multivariate CUSUM

procedure can be approximated by using a discrete Markov chain.

Following Brook and Evans,* the possible values of Y are
represented by t + 1 states. One state is an absorbing state
representing Y > h. The t transient states are numbered 0, 1,
2,...(t-l) and represent values of Y between 0 and h. It is
helpful to think of the Markov chain in terms of a discrete
random variable, call it Y', that takes on values 0, w,
2w ..... tw, where w = 2h/(2t - 1). The transition probabilities
among the transient states are needed to find the ARL. The

transition probabilities are

Prob(Y'n = jwly'n-1 = iw), i,j c[0,i,2,..., (t-l)]. (C-l)

To find the transition probabilities, note that Yn = max(O, Cn - k)

where Cn = [(Sn-1 + Xn - a)'V-l(sn-i + Xn - a) 1 / 2 .

The transition probabilities are conditional probabilities, so
that s(n - 1) is considered a constant rather than a random
variable. Hence, for the on-aim case, E[s(n-l) + x(n) - a]
s(n - 1) and Var [s(n - 1) + x(n) - a] = V. Under the
assumption of a multivariate normal distribution for x(n), C(n)
has a Chi distribution with noncentrality parameter

[s'n-1V-1sn-1]1 / 2 = Yn-1- (C-2)

Therefore,

Prob(Y'n = 01Y'n-1 = iw) = Prob(Cn : k + w/2) (C-3)

and, for j > 0,

Prob(Y'n = jwlY'n-1 = iw) = Prob[k + (j - 0.5) w < Cn < k
+ (j + 0.5)w] (C-4)

where C(n) has a Chi distribution with noncentrality parameter
iw. Brook and Evans suggest obtaining the ARL for several
different size Markov chains and extrapolating to the continuous
case by the formula

ARL(t) = Asymptotic ARL + B/t + C/T2 .

*Brooks, D., and Evans, D.A., "An Approach to the Probability
Distribution of CUSUM Run Lengths," Biometrika Vol. 59,
pp 539-549 (1972).
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For most of the schemes discussed in this article, using
t = 12, 15, 18, 21, and 24 was adequate to verify the on-aim
ARLs. Larger values of t are needed for schemes with large
values of h. For the scheme p = 20, h = 28, and k = 0.5, using
t = 12, 15, 18, 21, and 24 gave an asymptotic ARL of 634,
whereas the use of t = 12, 24, 36, 48, and 60 gave an asymptotic
ARL of 505.
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